Visit www.larnedu.com for more WASSCE past questions.

S5052 June W.A.S.S.C.E. 2006 CHEMISTRY 2 3 hours

Index Number:....

### THE WEST AFRICAN EXAMINATIONS COUNCIL West African Senior School Certificate Examination

June 2006

#### CHEMISTRY 2

Do not open this booklet until you are told to do so. While you are waiting, write your name and index number in the spaces provided at the top right-hand corner of this booklet and thereafter, read the following instructions carefully. This paper consists of two parts, A and B. Answer Part A on your Objective Test answer sheet and Part B in your answer booklet. Part A will last for 1 hour after which the answer sheet will be collected. Do not start Part B until you are told to do so. Part B will last for

#### PART A **OBJECTIVE TEST** [50 marks]

Use HB pencil throughout.

If you have got a blank answer sheet, complete the top section as follows.

(a) In the space marked Name, write in capital letters your surname followed by your other

(b) In the spaces marked Examination, Year, Subject and Paper, write 'W.A.S.S.C.E.', '2006 June', 'CHEMISTRY' and '2' respectively.

(c) In the box marked Index Number, write your index number vertically in the spaces on the left-hand side. There are numbered spaces in line with each digit. Shade carefully the space with the same number as each digit.

(d) In the box marked Paper Code, write the digits 505213 in the spaces on the left-hand side. Shade the corresponding numbered spaces in the same way as for your index number.

(e) In the box marked Sex, shade the space marked M if you are male, or F if you are female. 3. If you have got a pre-printed answer sheet, check that the details are correctly printed, as described in 2 above. In the boxes marked Index Number, Paper Code and Sex, reshade each of the shaded

An example is given below. This is for a male candidate, whose name is Chukwuma Adekunle Ciroma, whose index number is 4251102068 and who is offering Chemistry 2.

# WEST AFRICAN EXAMINATIONS

PRINT IN BLOCK LETTERS Name: CIROMA CHUKWUMA ADEKUNLE Examination: WASSCE Year: 2006 JUNE Other Names Paper: CHEMISTRY Subject: SEX PAPER CODE INDEX NUMBER 5 -03-13-23-23-43-63-63-73-83-93 Indicate your sex by c03c13c23c33mmc53c63c73c83c93 C13C23C43C53C63C73C83C93 shading the space c0=c1=====c3=c4=c5=c6=c7=c8=c9= marked M (for Male) 5 -03-13-23-23-43-63-63-73-83-93 c0>c1>c2>c3>c4> === c6>c7>c8>c9> or F (for Female) in 2 -03-13-63-33-43-53-63-73-83-93 c03.00 c23c33c43c53c63c73c83c93 this box: M c03 == c23 c3 c4 c5 c6 c6 c7 c8 c9 c c03 = c23 c33 c43 c53 c62 c73 c83 c93 3 =03=13=23 ===== =43=53=63=73=83=93 ₩ =13=23=33=43=53=63=73=83=93 c03c13 6 c33c43c53c63c73c83c93 INSTRUCTIONS TO CANDIDATES 1. Use grade HB pencil throughout 1. Use grade HB pencil inroughout.
2. Answer each question by choosing one letter and shading it like this: [A] [B] [C] 

3. Erase completely any answers you wish to change.
4. Leave extra spaces blank if the answer spaces provided are more than you need. **■** =13=23=33=43=53=63=73=83=93 c03c13c23c33c43c53mmc73c83c93 8 000010020030040050060070000090 Do not make any markings across the heavy black marks at the right-hand edge of For Supervisors only. If candidate is absent shade this space: your answer she © 2006 The West African Examinations Council

 $\label{eq:www.larnedu.com} \mbox{Visit} \ \underline{\mbox{www.larnedu.com}} \ \mbox{for more} \ \underline{\mbox{WASSCE past question}} s.$ 

| Ans                   | wer all the questions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ques                  | Each question is followed by four options lettered A to D. Find out the correct option for eastion and shade in pencil on your answer sheet, the answer space which bears the same letter option you have chosen. Give only one answer to each question. An example is given below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Whi                   | ch of the following elements reacts with water?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 311                   | A. Carbon  B. Iodine  C. Sodium  D. Sulphur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| The                   | correct answer is Sodium, which is lettered C and therefore answer space C would be shaded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                       | [A] [B] [D]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Thin                  | k carefully before you shade the answer spaces; erase completely any answer you wish to chang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                       | all rough work on this question paper. The standard the second for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                       | Wilder State Committee of the Manual Andrew Service and Andrew Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ivou                  | answer the jouowing questions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.                    | How many orbitals are in the d-sub shell?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       | (e) In the box harked Index Mundy write your bules number verifically is A. A. I see eve numbered spaces in the with each diett, Shade care if the B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | D. State of the second of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                       | C. a. 5 led Silver as here add in the 2000 of igns extractive about 10 mg to the proof and in the contractive about 10 mg to 10 mg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| abi                   | with the same marked Pares Code which the draw 505 205 20 in the war so on the left and the thirty of the box marked Pares Code which the traces in the same was as the property of the pares in the same was as the property of the pares in the same was as the pares in the box tanked New shade the grace marked Mark of the traces in the box tanked New Shade the grace marked Mark of the pares in the box tanked New Shade the grace marked Mark of the pares in the box tanked New Shade the grace marked Mark of the pares in the box tanked New Shade the grace marked Mark of the pares in the box tanked New Shade the grace marked Mark of the pares in the box tanked New Shade the grace marked Mark of the pares in the box tanked New Shade the grace marked Mark of the pares in the box tanked New Shade the grace marked Mark of the pares in th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>2.</b>             | C. 5 1 and the state of the sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| uh);<br>2.            | C. 5   C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.                    | C. 5   1   2   2   2   2   2   2   2   2   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| zion<br>2. la<br>Janu | C. 5   1   2   2   2   2   2   2   2   2   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       | C. 5   1   2   2   2   2   2   2   2   2   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Jmi                   | C. 5  D. 7  An element X has isotopic masses of 6 and 7. If the relative abundance is 1 to 12.5 respective what is the relative atomic mass of X?  A. 6.0  B. 6.1  C. 6.9  D. 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| J.mi                  | C. 5 D. 7  An element X has isotopic masses of 6 and 7. If the relative abundance is 1 to 12.5 respective what is the relative atomic mass of X?  A. '6.0  B. 6.1  C. 6.9  D. 7.0  An atom <sup>238</sup> An atom |
| 3.                    | C. 5 D. 7  An element X has isotopic masses of 6 and 7. If the relative abundance is 1 to 12.5 respective what is the relative atomic mass of X?  A. '6.0 B. 6.1 C. 6.9 D. 7.0  An atom '238 X decays by alpha particle emission to give an atom Y. The atomic number at mass number of Y are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3.                    | C. 5 D. 7  An element X has isotopic masses of 6 and 7. If the relative abundance is 1 to 12.5 respective what is the relative atomic mass of X?  A. '6.0  B. 6.1  C. 6.9  D. 7.0  An atom '238 X decays by alpha particle emission to give an atom Y. The atomic number at mass number of Y are  A. 90 and 234 respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3.                    | C. 5 D. 7  An element X has isotopic masses of 6 and 7. If the relative abundance is 1 to 12.5 respective what is the relative atomic mass of X?  A. 6.0 B. 6.1 C. 6.9 D. 7.0  An atom 238 X decays by alpha particle emission to give an atom Y. The atomic number at mass number of Y are  A. 90 and 234 respectively.  B. 91 and 238 respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3.                    | C. 5 D. 7  An element X has isotopic masses of 6 and 7. If the relative abundance is 1 to 12.5 respective what is the relative atomic mass of X?  A. '6.0 B. 6.1 C. 6.9 D. 7.0  An atom <sup>238</sup> / <sub>92</sub> X decays by alpha particle emission to give an atom Y. The atomic number at mass number of Y are  A. 90 and 234 respectively. B. 91 and 238 respectively. C. 92 and 236 respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3.                    | C. 5 D. 7  An element X has isotopic masses of 6 and 7. If the relative abundance is 1 to 12.5 respective what is the relative atomic mass of X?  A. 6.0  B. 6.1  C. 6.9  D. 7.0  An atom <sup>238</sup> / <sub>92</sub> X decays by alpha particle emission to give an atom Y. The atomic number at mass number of Y are  A. 90 and 234 respectively.  B. 91 and 238 respectively.  C. 92 and 236 respectively.  D. 93 and 238 respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 33.                   | C. 5 D. 7  An element X has isotopic masses of 6 and 7. If the relative abundance is 1 to 12.5 respective what is the relative atomic mass of X?  A. '6.0 B. 6.1 C. 6.9 D. 7.0  An atom <sup>238</sup> / <sub>92</sub> X decays by alpha particle emission to give an atom Y. The atomic number at mass number of Y are  A. 90 and 234 respectively. B. 91 and 238 respectively. C. 92 and 236 respectively. D. 93 and 238 respectively.  An element with mass number 133 and atomic number 55 has                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3.                    | An element X has isotopic masses of 6 and 7. If the relative abundance is 1 to 12.5 respective what is the relative atomic mass of X?  A. '6.0  B. 6.1  C. 6.9  D. 7.0  An atom '238 X decays by alpha particle emission to give an atom Y. The atomic number at mass number of Y are  A. 90 and 234 respectively.  B. 91 and 238 respectively.  C. 92 and 236 respectively.  An element with mass number 133 and atomic number 55 has  A. 55 electrons and 55 neutrons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3.                    | C. 5 bland D. 7  An element X has isotopic masses of 6 and 7. If the relative abundance is 1 to 12.5 respective what is the relative atomic mass of X?  A. '6.0  B. 6.1  C. 6.9  D. 7.0  An atom '238 X decays by alpha particle emission to give an atom Y. The atomic number at mass number of Y are  A. 90 and 234 respectively.  B. 91 and 238 respectively.  C. 92 and 236 respectively.  D. 93 and 238 respectively.  An element with mass number 133 and atomic number 55 has  A. 55 electrons and 55 neutrons.  B. 55 electrons and 78 neutrons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3.                    | C. 5 let be described as a solution of the relative abundance is 1 to 12.5 respective what is the relative atomic mass of X?  A. 6.0  B. 6.1  C. 6.9  D. 7.0  An atom 238 X decays by alpha particle emission to give an atom Y. The atomic number at mass number of Y are  A. 90 and 234 respectively.  B. 91 and 238 respectively.  C. 92 and 236 respectively.  D. 93 and 238 respectively.  An element with mass number 133 and atomic number 55 has  A. 55 electrons and 55 neutrons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Visit www.larnedu.com for more WASSCE past questions.

|              | Visit William Cause III and Cause Guest Gu |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5.           | Which of the following pairs of species contains the same number of electrons?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| and the same | [6C, 8O, 10Ne, 11Na, 12Mg, 13Al, 13Cl] min normbers and ni 1+ lu sons affinA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | A. Mg2+ more server of the same tripabet of outermost electrons in the respect to the same and the same between successive members of 14 and 14 and 14 and 14 and 15 and 15 and 15 and 16 and 1 |
|              | D. 'Or respect the same sures of election shells in the respective atom and blan CI and Ne respective atom of the same shells in the respective atom of the same shells.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 25.00        | C. Nat and Mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.01         | D. C and O <sup>2</sup> — suppress own of to nontenion on the desired of a visit a sharp quo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6.           | An element X has electronic configuration $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | To which group of the periodic table does X belong?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1            | A. I He 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | B. II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 976          | What ever of bond will be formed between sidments? and the Bort lectron again im all Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 17           | D. IV . A G Ma A C S D C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              | A. Covalem bond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7.           | Which of the following sets of elements is arranged in order of increasing first ionization energies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              | A. 11Na, 3Li, 19K, 37Rb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              | D Db W I; No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| · sit        | B. 37Rb, 19K, 3Li, 11Na to non-protein as bevious as subnect as missed by agriculture.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | C. <sub>3</sub> Li, <sub>19</sub> K, <sub>11</sub> Na, <sub>37</sub> Rb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7 7 13       | D. 37Rb, 19K, 11Na, 3Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8.           | Which of the following electronic configurations represent that of a noble gas?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | A. 2, 8, 8, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              | B. 2, 6, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | A. Attraction between the delocalized electrons and fixed positive latifectpoints 8, 2 on 2.  B. Attraction between positive and negative ions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              | D. 2, 6 mbt din 3 Sharing of electrons between the metal atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>√9.</b>   | Diamond is a hard substance because its carbon atoms are held by to the local and a diament.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1            | A. delocalised electrons. Our of any and a set that have a set of the polynomer set would set of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              | B. strong electrostatic forces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              | C. van der Waals forces.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              | D. strong directional covalent bonds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10           | The programs of provincial electrons in an etc. of all 1.1.1.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10.          | A 112 (6 ) A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1   A 1     |
| 1            | A ductility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Which of the letters indicate elements which exist as diatomic gases?

lustre.

C. malleability.

D. paramagnetism.

B.

Obas H . A

C. Cand A.

Visit www.larnedu.com for more WASSCE past questions.

|   | 11. | Elements w | nich bel | ong to the | same group | in the periodic | 411          |                |
|---|-----|------------|----------|------------|------------|-----------------|--------------|----------------|
| 1 |     |            |          | 8          | sume group | in the periodic | table are ch | aracterized by |

- difference of +1 in the oxidation numbers of successive members.
- presence of the same number of outermost electrons in the respective atoms.
- difference of 14 atomic mass units between successive members.
- presence of the same number of electron shells in the respective atoms.
- 12. The atomic numbers of elements X and Y are 20 and 17 respectively. Which of the follows compounds is likely to be formed by the combination of the two elements?

An element X has electronic configuration, by 2s 2pt 3s 3pt 4s

To which group of the periodic and does & belong?

- A. XY
- B. XY<sub>2</sub>
- C. XY3
- D. X<sub>2</sub>Y
- 13. What type of bond will be formed between elements P and Q if their electronegativity values 0.8 and 4.0 respectively?
  - A. Covalent bond
  - Which of the following sets of elements is arranged in order of meres bond standard of the following sets of elements is arranged in order of the following sets of elements is a real set of the following sets of elements is a real set of the following sets of elements is a real set of the following sets of elements is a real set of the following sets of elements is a real set of the following sets of elements is a real set of the following sets of elements is a real set of the following sets of elements is a real set of the following sets of elements is a real set of the following sets of elements is a real set of the following sets of elements is a real set of the following set of the followi
  - C. Ionic bond
  - D. Metallic bond
  - 14. What type of chemical bonding is involved in the formation of NH<sub>4</sub><sup>+</sup> from a molecule of ammo
    - A. Covalent bonding
    - B. Co-ordinate covalent bonding
    - C. Electrovalent bonding
    - D. Hydrogen bonding
  - 15. What is responsible for metallic bonding?
    - A. Attraction between the delocalized electrons and fixed positive lattice points (cations)
    - B. Attraction between positive and negative ions
    - C. Sharing of electrons between the metal atoms
    - D. Transfer of electrons from one atom to another and a consider that

Use the following portion of the period table to answer Questions 16 to 18.

|      | <u> </u> | 11   | III   | 1٧ | ٧     | VI      | VII   | VIII |
|------|----------|------|-------|----|-------|---------|-------|------|
| 1    | A        | 01/4 | earth |    |       |         |       | В    |
| 7 K. |          | C    |       | D  |       | ~ \ N = | 18, 2 | (5)  |
| 7    | E        | 8 :- |       |    | . ( ~ |         | F     | G    |

- 16. Which of the letters indicate elements which exist as diatomic gases?
  - A. B and G
  - B. C and F
  - C. C and A
  - D. A and E

Visit <u>www.larnedu.com</u> for more <u>WASSCE past question</u>s.

| Argon Argon Chlomac Ch                                                        | 17. Wh              | ich of the letters represents an a                                         | Ikaline earth metal? Him are your animoliol of lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | daidW,            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| B. E. C. D D. C  18. Which of the following pairs of letters denotes elements containing the same number of ele in their outermost shells?  A. C and D B. E and F C. B and G D. A and B.  19. If 1 mole of sodium contains 6 × 10 <sup>23</sup> atoms, how many atoms are contained in 0.6 g of so [Na = 23]  A. 1.56 × 10 <sup>23</sup> B. 1.56 × 10 <sup>22</sup> C. 3.6 × 10 <sup>22</sup> C. 3.6 × 10 <sup>22</sup> D. 3.6 × 10 <sup>22</sup> 20. If 20 cm³ of distilled water is added to 80 cm³ of 0.50 mol dm⁻³ hydrochloric acid, the concentration of the acid will be  A. 0.10 mol dm⁻³.  B. 0.20 mol dm⁻³.  C. 0.40 mol dm⁻³.  D. 2.00 mol dm⁻³.  21. Consider the reaction represented by the equation:  2NaHCO <sub>3(s)</sub> heat Na <sub>2</sub> CO <sub>3(s)</sub> + CO <sub>2(g)</sub> + H <sub>2</sub> O <sub>(g)</sub> .  What volume of carbon (IV) oxide at s.t.p. is evolved when 0.5 moles of NaHCO <sub>3</sub> is he  [ Molar volume = 22.4 dm³ at s.t.p. ]  A. 1.12 dm³ B. 2.24 dm³ C. 5.6 dm³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ALL CHARLES AND AND |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| C. D D. C  18. Which of the following pairs of letters denotes elements containing the same number of ele in their outermost shells?  A. C and D B. E and F C. B and G D. A and B  19. If 1 mole of sodium contains 6 × 10 <sup>23</sup> atoms, how many atoms are contained in 0.6 g of so [Na = 23]  A. 1.56 × 10 <sup>23</sup> B. 1.56 × 10 <sup>22</sup> C. 3.6 × 10 <sup>23</sup> D. 3.6 × 10 <sup>22</sup> 20. If 20 cm³ of distilled water is added to 80 cm³ of 0.50 mol dm⁻³ hydrochloric acid, the concentration of the acid will be  A. 0.10 mol dm⁻³.  C. 0.40 mol dm⁻³.  D. 2.00 mol dm⁻³.  21. Consider the reaction represented by the equation:  2NaHCO³(s) heat / Na2CO³(s) + CO²(s) + H²O²(s).  What volume of carbon (IV) oxide at s.t.p. is evolved when 0.5 moles of NaHCO₃ is he [Molar volume = 22.4 dm³ at s.t.p.]  A. 1.12 dm³  B. 2.24 dm³ C. 5.6 dm³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| <ul> <li>18. Which of the following pairs of letters denotes elements containing the same number of ele in their outermost shells?  A. C and D  B. E and F  C. B and G  D. A and B  19. If 1 mole of sodium contains 6 × 10<sup>23</sup> atoms, how many atoms are contained in 0.6 g of so [Na = 23]  A. 1.56 × 10<sup>23</sup>  B. 1.56 × 10<sup>23</sup>  C. 3.6 × 10<sup>23</sup>  D. 3.6 × 10<sup>22</sup>  20. If 20 cm² of distilled water is added to 80 cm³ of 0.50 mol dm⁻³ hydrochloric acid, the concentration of the acid will be  A. 0.10 mol dm⁻³.  B. 0.20 mol dm⁻³.  C. 0.40 mol dm⁻³.  D. 2.00 mol dm⁻³.  21. Consider the reaction represented by the equation:  2NaHCO<sub>3(g)</sub> heat Na<sub>2</sub>CO<sub>3(g)</sub> + CO<sub>2(g)</sub> + H<sub>2</sub>O<sub>(g)</sub>.  What volume of carbon (IV) oxide at s.t.p. is evolved when 0.5 moles of NaHCO<sub>3</sub> is he [Molar volume = 22.4 dm³ at s.t.p.]  A. 1.12 dm³  B. 2.24 dm³  C. 5.6 dm³  C. 5.6 dm³  Na<sub>2</sub>CO<sub>3</sub>CO<sub>3</sub>CO<sub>3</sub>CO<sub>3</sub>CO<sub>3</sub>CO<sub>3</sub>CO<sub>3</sub>CO<sub>3</sub></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C.                  |                                                                            | hlonae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
| <ul> <li>18. Which of the following pairs of letters denotes elements containing the same number of ele in their outermost shells?</li> <li>A. C and D</li> <li>B. E and F</li> <li>C. B and G</li> <li>D. A and B</li> <li>19. If 1 mole of sodium contains 6 × 10<sup>23</sup> atoms, how many atoms are contained in 0.6 g of so [Na = 23]</li> <li>A. 1.56 × 10<sup>23</sup></li> <li>B. 1.56 × 10<sup>22</sup></li> <li>C. 3.6 × 10<sup>23</sup></li> <li>D. 3.6 × 10<sup>22</sup></li> <li>20. If 20 cm³ of distilled water is added to 80 cm³ of 0.50 mol dm⁻³ hydrochloric acid, the concentration of the acid will be</li> <li>A. 0.10 mol dm⁻³.</li> <li>B. 0.20 mol dm⁻³.</li> <li>C. 0.40 mol dm⁻³.</li> <li>D. 2.00 mol dm⁻³.</li></ul> | D.                  | C castrement of heat of pent                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| B. E and F C. B and G D. A and B  19. If 1 mole of sodium contains $6 \times 10^{23}$ atoms, how many atoms are contained in 0.6 g of so [Na = 23]  A. $1.56 \times 10^{23}$ B. $1.56 \times 10^{23}$ B. $1.56 \times 10^{22}$ C. $3.6 \times 10^{23}$ D. $3.6 \times 10^{22}$ 20. If $20 \text{ cm}^3$ of distilled water is added to $80 \text{ cm}^3$ of $0.50 \text{ mol } dm^{-3}$ hydrochloric acid, the concentration of the acid will be A. $0.10 \text{ mol } dm^{-3}$ . B. $0.20 \text{ mol } dm^{-3}$ . C. $0.40 \text{ mol } dm^{-3}$ . D. $2.00 \text{ mol } dm^{-3}$ .  21. Consider the reaction represented by the equation: $2\text{NaHCO}_{3(s)} \xrightarrow{\text{heat}} \text{Na}_{2}\text{CO}_{3(s)} + \text{CO}_{2(g)} + \text{H}_{2}\text{O}_{(g)}$ What volume of carbon (IV) oxide at s.t.p. is evolved when 0.5 moles of NaHCO <sub>3</sub> is he [Molar volume = $22.4 \text{ dm}^3$ B. $2.24 \text{ dm}^3$ B. $2.24 \text{ dm}^3$ C. $5.6 \text{ dm}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18. Wh              | their outermost shells?                                                    | ers denotes elements containing the same number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ofelec            |
| C. B and G D. A and B  19. If 1 mole of sodium contains $6 \times 10^{23}$ atoms, how many atoms are contained in $0.6 g$ of so [Na = 23 ]  A. $1.56 \times 10^{23}$ B. $1.56 \times 10^{22}$ C. $3.6 \times 10^{23}$ D. $3.6 \times 10^{22}$ 20. If $20 \text{ cm}^3$ of distilled water is added to $80 \text{ cm}^3$ of $0.50 \text{ mol dm}^{-3}$ hydrochloric acid, the concentration of the acid will be  A. $0.10 \text{ mol dm}^{-3}$ . B. $0.20 \text{ mol dm}^{-3}$ . C. $0.40 \text{ mol dm}^{-3}$ . D. $2.00 \text{ mol dm}^{-3}$ .  21. Consider the reaction represented by the equation: $2\text{NaHCO}_{3(s)} \xrightarrow{\text{heat}} \text{Na}_2\text{CO}_{3(s)} + \text{CO}_{2(g)} + \text{H}_2\text{O}_{(g)}.$ What volume of carbon (IV) oxide at s.t.p. is evolved when $0.5 \text{ moles of NaHCO}_3$ is he  [Molar volume = $22.4 \text{ dm}^3$ at s.t.p.]  A. $1.12 \text{ dm}^3$ B. $2.24 \text{ dm}^3$ C. $5.6 \text{ dm}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . A.                | C and D                                                                    | CH3 CH and Ve CH1 (pp) HO + (pr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fi ·              |
| C. B and G D. A and B  19. If 1 mole of sodium contains $6 \times 10^{23}$ atoms, how many atoms are contained in $0.6 g$ of so [Na = 23 ]  A. $1.56 \times 10^{23}$ B. $1.56 \times 10^{22}$ C. $3.6 \times 10^{23}$ D. $3.6 \times 10^{22}$ 20. If $20 \text{ cm}^3$ of distilled water is added to $80 \text{ cm}^3$ of $0.50 \text{ mol dm}^{-3}$ hydrochloric acid, the concentration of the acid will be  A. $0.10 \text{ mol dm}^{-3}$ . B. $0.20 \text{ mol dm}^{-3}$ . C. $0.40 \text{ mol dm}^{-3}$ . D. $2.00 \text{ mol dm}^{-3}$ .  21. Consider the reaction represented by the equation: $2\text{NaHCO}_{3(s)} \xrightarrow{\text{heat}} \text{Na}_2\text{CO}_{3(s)} + \text{CO}_{2(g)} + \text{H}_2\text{O}_{(g)}.$ What volume of carbon (IV) oxide at s.t.p. is evolved when $0.5 \text{ moles of NaHCO}_3$ is he  [Molar volume = $22.4 \text{ dm}^3$ at s.t.p.]  A. $1.12 \text{ dm}^3$ B. $2.24 \text{ dm}^3$ C. $5.6 \text{ dm}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | В.                  |                                                                            | argy change taking place in the reaction show it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | no silf           |
| 19. If 1 mole of sodium contains $6 \times 10^{23}$ atoms, how many atoms are contained in $0.6  g$ of so [Na = 23]  A. $1.56 \times 10^{23}$ B. $1.56 \times 10^{22}$ C. $3.6 \times 10^{23}$ D. $3.6 \times 10^{22}$ 20. If $20  cm^3$ of distilled water is added to $20  cm^3$ of $20.50  mol  dm^{-3}$ hydrochloric acid, the concentration of the acid will be  A. $20.0  mol  dm^{-3}$ B. $20.0  mol  dm^{-3}$ C. $20.0  mol  dm^{-3}$ D. $2.00  mol  dm^{-3}$ C. $20.0  mol  dm^{-3}$ D. $20.0  mol  d$                                                                                                                                                                       | <b>2</b> C.         | B and G                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| [Na = 23 ]  A. $1.56 \times 10^{23}$ B. $1.56 \times 10^{22}$ C. $3.6 \times 10^{23}$ D. $3.6 \times 10^{22}$ 20. If $20 \text{ cm}^3$ of distilled water is added to $80 \text{ cm}^3$ of $0.50 \text{ mol } dm^{-3}$ hydrochloric acid, the concentration of the acid will be  A. $0.10 \text{ mol } dm^{-3}$ .  B. $0.20 \text{ mol } dm^{-3}$ .  C. $0.40 \text{ mol } dm^{-3}$ .  D. $2.00 \text{ mol } dm^{-3}$ .  21. Consider the reaction represented by the equation: $2\text{NaHCO}_{3(s)}^{3} \xrightarrow{\text{heat}} \text{Na}_2 \text{CO}_{3(s)} + \text{CO}_{2(g)} + \text{H}_2 \text{O}_{(g)}.$ What volume of carbon (IV) oxide at s.t.p. is evolved when $0.5 \text{ moles}$ of NaHCO <sub>3</sub> is hear [Molar volume = $22.4 \text{ dm}^3$ at s.t.p.]  A. $1.12 \text{ dm}^3$ B. $2.24 \text{ dm}^3$ C. $5.6 \text{ dm}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D.                  | A and B                                                                    | dration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B. hy             |
| A. $1.56 \times 10^{23}$ B. $1.56 \times 10^{22}$ C. $3.6 \times 10^{23}$ D. $3.6 \times 10^{22}$ 20. If $20 \text{ cm}^3$ of distilled water is added to $20 \text{ cm}^3$ of $20 \text{ cm}^3$ hydrochloric acid, the concentration of the acid will be  A. $0.10 \text{ mol } dm^{-3}$ .  B. $0.20 \text{ mol } dm^{-3}$ .  C. $0.40 \text{ mol } dm^{-3}$ .  D. $2.00 \text{ mol } dm^{-3}$ .  21. Consider the reaction represented by the equation: $2 \text{NaHCO}_{3(s)} \xrightarrow{\text{heat}} \text{Na}_2 \text{CO}_{3(s)} + \text{CO}_{2(g)} + \text{H}_2 \text{O}_{(g)}.$ What volume of carbon (IV) oxide at s.t.p. is evolved when $20 \text{ cm}^2$ is he [Molar volume = $22.4 \text{ dm}^3$ at s.t.p. ]  A. $1.12 \text{ dm}^3$ B. $2.24 \text{ dm}^3$ C. $5.6 \text{ dm}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                                                            | the state of the same of the s | itilizta          |
| C. $3.6 \times 10^{23}$ D. $3.6 \times 10^{22}$ 20. If $20 \text{ cm}^3$ of distilled water is added to $80 \text{ cm}^3$ of $0.50 \text{ mol } dm^{-3}$ hydrochloric acid, the concentration of the acid will be  A. $0.10 \text{ mol } dm^{-3}$ .  B. $0.20 \text{ mol } dm^{-3}$ .  C. $0.40 \text{ mol } dm^{-3}$ .  D. $2.00 \text{ mol } dm^{-3}$ .  21. Consider the reaction represented by the equation: $2\text{NaHCO}_{3(s)} \xrightarrow{\text{heat}} \text{Na}_2\text{CO}_{3(s)} + \text{CO}_{2(g)} + \text{H}_2\text{O}_{(g)}.$ What volume of carbon (IV) oxide at s.t.p. is evolved when 0.5 moles of NaHCO <sub>3</sub> is here.  [Molar volume = $22.4 \text{ dm}^3$ at s.t.p.]  A. $1.12 \text{ dm}^3$ B. $2.24 \text{ dm}^3$ C. $5.6 \text{ dm}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Α.                  | $1.56 \times 10^{23}$                                                      | of the following processes is an enauthermic/res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | doidW             |
| C. $3.6 \times 10^{23}$ D. $3.6 \times 10^{22}$ 20. If $20 \text{ cm}^3$ of distilled water is added to $80 \text{ cm}^3$ of $0.50 \text{ mol } dm^{-3}$ hydrochloric acid, the concentration of the acid will be  A. $0.10 \text{ mol } dm^{-3}$ .  B. $0.20 \text{ mol } dm^{-3}$ .  C. $0.40 \text{ mol } dm^{-3}$ .  D. $2.00 \text{ mol } dm^{-3}$ .  21. Consider the reaction represented by the equation: $2\text{NaHCO}_{3(s)} \xrightarrow{\text{heat}} \text{Na}_2\text{CO}_{3(s)} + \text{CO}_{2(g)} + \text{H}_2\text{O}_{(g)}$ What volume of carbon (IV) oxide at s.t.p. is evolved when 0.5 moles of NaHCO <sub>3</sub> is here.  [Molar volume = $22.4 \text{ dm}^3$ at s.t.p.]  A. $1.12 \text{ dm}^3$ B. $2.24 \text{ dm}^3$ C. $5.6 \text{ dm}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | В.                  | $1.56 \times 10^{22}$                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| <ul> <li>D. 3.6 × 10<sup>22</sup></li> <li>20. If 20 cm³ of distilled water is added to 80 cm³ of 0.50 mol dm⁻³ hydrochloric acid, the concentration of the acid will be</li> <li>A. 0.10 mol dm⁻³.</li> <li>B. 0.20 mol dm⁻³.</li> <li>C. 0.40 mol dm⁻³.</li> <li>D. 2.00 mol dm⁻³.</li> <li>21. Consider the reaction represented by the equation:  2NaHCO₃(s) heat → Na₂CO₃(s) + CO₂(g) + H₂O(g).</li> <li>What volume of carbon (IV) oxide at s.t.p. is evolved when 0.5 moles of NaHCO₃ is heat [Molar volume = 22.4 dm³ at s.t.p.]</li> <li>A. 1.12 dm³</li> <li>B. 2.24 dm³</li> <li>C. 5.6 dm³</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| concentration of the acid will be  A. $0.10 \text{ mol } dm^{-3}$ .  B. $0.20 \text{ mol } dm^{-3}$ .  C. $0.40 \text{ mol } dm^{-3}$ .  D. $2.00 \text{ mol } dm^{-3}$ .  21. Consider the reaction represented by the equation: $2\text{NaHCO}_{3(s)} \xrightarrow{\text{heat}} \text{Na}_2\text{CO}_{3(s)} + \text{CO}_{2(g)} + \text{H}_2\text{O}_{(g)}.$ What volume of carbon (IV) oxide at s.t.p. is evolved when 0.5 moles of NaHCO <sub>3</sub> is he  [ Molar volume = $22.4  dm^3$ at s.t.p. ]  A. $1.12  dm^3$ B. $2.24  dm^3$ C. $5.6  dm^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                                                                            | C . 126 × 19 may be a file so the same so  |                   |
| B. $0.20 \text{ mol } dm^{-3}$ .  C. $0.40 \text{ mol } dm^{-3}$ .  D. $2.00 \text{ mol } dm^{-3}$ .  21. Consider the reaction represented by the equation: $2\text{NaHCO}_{3(s)} \xrightarrow{\text{heat}} \text{Na}_2\text{CO}_{3(s)} + \text{CO}_{2(g)} + \text{H}_2\text{O}_{(g)}.$ What volume of carbon (IV) oxide at s.t.p. is evolved when 0.5 moles of NaHCO <sub>3</sub> is here.  [ Molar volume = $22.4  dm^3$ at s.t.p. ]  A. $1.12  dm^3$ B. $2.24  dm^3$ C. $5.6  dm^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20. If              | $20 \text{ cm}^3$ of distilled water is adoncentration of the acid will be | ded to $80  cm^3 \text{ of } 0.50  mol  dm^{-3} \text{ hydrochloric } s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | acid, th          |
| C. $0.40 \text{ mol } dm^{-3}$ .  D. $2.00 \text{ mol } dm^{-3}$ .  21. Consider the reaction represented by the equation: $2\text{NaHCO}_{3(s)} \xrightarrow{\text{heat}} \text{Na}_2\text{CO}_{3(s)} + \text{CO}_{2(g)} + \text{H}_2\text{O}_{(g)}.$ What volume of carbon (IV) oxide at s.t.p. is evolved when 0.5 moles of NaHCO <sub>3</sub> is he  [Molar volume = $22.4 \text{ dm}^3$ at s.t.p.]  A. $1.12 \text{ dm}^3$ B. $2.24 \text{ dm}^3$ C. $5.6 \text{ dm}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A                   | $0.10 \ mol \ dm^{-3}$                                                     | on of KNO & 2712 cm avaporated to dry LYD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | iga3 <sub>1</sub> |
| C. $0.40 \text{ mol } dm^{-3}$ .  D. $2.00 \text{ mol } dm^{-3}$ .  21. Consider the reaction represented by the equation: $2\text{NaHCO}_{3(s)} \xrightarrow{\text{heat}} \text{Na}_2\text{CO}_{3(s)} + \text{CO}_{2(g)} + \text{H}_2\text{O}_{(g)}.$ What volume of carbon (IV) oxide at s.t.p. is evolved when 0.5 moles of NaHCO <sub>3</sub> is he  [ Molar volume = $22.4 \text{ dm}^3$ at s.t.p. ]  A. $1.12 \text{ dm}^3$ B. $2.24 \text{ dm}^3$ C. $5.6 \text{ dm}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | В                   | $0.20 \ mol \ dm^{-3}$ .                                                   | FA-14-16-1-3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |
| 21. Consider the reaction represented by the equation: $2\text{NaHCO}_{3(s)} \xrightarrow{\text{heat}} \text{Na}_2\text{CO}_{3(s)} + \text{CO}_{2(g)} + \text{H}_2\text{O}_{(g)}.$ What volume of carbon (IV) oxide at s.t.p. is evolved when 0.5 moles of NaHCO <sub>3</sub> is held [Molar volume = 22.4 $dm^3$ at s.t.p. ]  A. 1.12 $dm^3$ B. 2.24 $dm^3$ C. 5.6 $dm^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C                   |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 21. Consider the reaction represented by the equation: $2\text{NaHCO}_{3(s)} \xrightarrow{\text{heat}} \text{Na}_2\text{CO}_{3(s)} + \text{CO}_{2(g)} + \text{H}_2\text{O}_{(g)}.$ What volume of carbon (IV) oxide at s.t.p. is evolved when 0.5 moles of NaHCO <sub>3</sub> is he  [Molar volume = 22.4 dm <sup>3</sup> at s.t.p.]  A. 1.12 dm <sup>3</sup> B. 2.24 dm <sup>3</sup> C. 5.6 dm <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 140                 |                                                                            | autors: / X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
| $2\text{NaHCO}_{3(s)} \xrightarrow{\text{heat}} \text{Na}_2\text{CO}_{3(s)} + \text{CO}_{2(g)} + \text{H}_2\text{O}_{(g)}.$ What volume of carbon (IV) oxide at s.t.p. is evolved when 0.5 moles of NaHCO <sub>3</sub> is he  [Molar volume = 22.4 $dm^3$ at s.t.p.]  A. 1.12 $dm^3$ B. 2.24 $dm^3$ C. 5.6 $dm^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | _ 2.00 moi am                                                              | Regrant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |
| What volume of carbon (IV) oxide at s.t.p. is evolved when 0.5 moles of NaHCO <sub>3</sub> is he  [Molar volume = $22.4 \ dm^3$ at s.t.p. ]  A. $1.12 \ dm^3$ B. $2.24 \ dm^3$ C. $5.6 \ dm^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21. C               | consider the reaction represented                                          | by the equation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |
| [Molar volume = $22.4 \ dm^3$ at s.t.p.]  A. $1.12 \ dm^3$ B. $2.24 \ dm^3$ C. $5.6 \ dm^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | У                 |
| Molar volume = 22.4 $dm^3$ at s.t.p. ]  A. 1.12 $dm^3$ sould of anothic sensor anothic success growell of odd $d$ and $d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V                   | What volume of carbon (IV) oxid                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 is hea          |
| B. 2.24 dm <sup>3</sup> C. 5.6 dm <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | [ Molar volume = $22.4 \text{ dm}^3$                                       | at s.t.p. ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d i               |
| B. 2.24 dm <sup>3</sup> C. 5.6 dm <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | $1.12  dm^3$                                                               | if the following agreeing solutions turns and little                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Visien o          |
| C. $5.6  dm^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | 2011                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Nai               |
| Political Control of the Control of                                                         |                     | 2                                                                          | 28+1:120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HO                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MA                |

Visit www.larnedu.com for more WASSCE past questions.

6

22. Which of the following gases will have the lowest rate of diffusion under the same condition

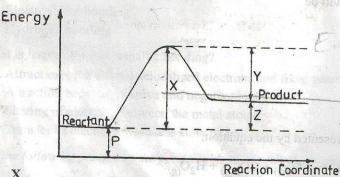
[N = 14, O = 16, Cl = 35.5, Ar = 40.]

- A. Argon
- B. Chlorine
- C. Nitrogen
- D. Oxygen

23. Consider the reaction:

$$H_{(aq)}^+ + OH_{(aq)}^- \longrightarrow H_2O_{(l)}$$
.

The energy change taking place in the reaction above is enthalpy of


- A. formation.
- B. hydration.
- C. neutralization.
- D. solution.

24. Which of the following processes is an endothermic reaction?

- A. Dissolving NH<sub>4</sub>Cl crystals in water
- B. Addition of concentrated H<sub>2</sub>SO<sub>4</sub> to water
- C. Dissolving NaOH pellets in water
- D. Passing SO<sub>3</sub> gas into water

25. In the energy profile diagram below, which letter represents the activation energy for the reverence reaction?

What volume of carbon (IV) oxide at sith is crowed



- A. X
- B. Y
  - C. Z
  - D. P

26. Which of the following aqueous solutions turns red litmus to blue?

- A. NaCl
- B. CH<sub>3</sub>COONa
- C. AlCl<sub>3</sub>
- D. NH<sub>4</sub>Cl

2028

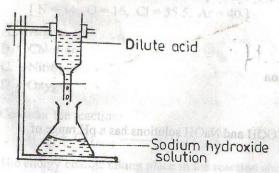
Visit www.larnedu.com for more WASSCE past questions.

- 27. Which of the following methods cannot be used to distinguish between a strong acid and a weak acid?
  - A. Conductivity measurement
  - B. Measurement of pH
  - C. Measurement of heat of neutralization
  - D. Action on starch iodide paper
- 28. The indicator used in neutralizing CH<sub>3</sub>COOH and NaOH solutions has a pH range of
  - A. 3-5.
  - B. 7 8.
  - C. 8 10.
  - D. 10 12.
- 29. When aqueous ammonia is added to one of the following solutions, a white precipitate which dissolves in excess ammonia is formed. Identify the solution.
  - A. ZnCl<sub>2(aq)</sub>
  - B.  $Pb(NO_3)_{2(aq)}$
  - C. CuSO<sub>4(aq)</sub>
  - D. FeSO<sub>4(aq)</sub>
- 30. When 50 cm<sup>3</sup> of a saturated solution of KNO<sub>3</sub> at 25°C was evaporated to dryness, 10 g of dry salt was obtained. What is the solubility of KNO<sub>3</sub> at 25°C?

$$[KNO_3 = 101]$$

- A.  $0.10 \text{ mol dm}^{-3}$
- B.  $2.0 \text{ mol dm}^{-3}$
- C.  $5.0 \text{ mol dm}^{-3}$
- D.  $10.0 \text{ mol dm}^{-3}$
- 31. Which of the following compounds absorbs moisture from the atmosphere and dissolves in it?

Which of the following conditions will not increase the


Decrease in temperature

- A. FeCl3 Del quescent
- B. MgSO<sub>4</sub>·7H<sub>2</sub>O
- C. Na<sub>2</sub>SO<sub>4</sub>
- D. KCl

Visit www.larnedu.com for more WASSCE past questions.

8

32. Consider the diagram below: Sugarable of heart and together assentian



The set-up is used for the preparation of a salt by

- A. double decomposition.
- B. crystallization.
- C. neutralization.
- D. direct combination. Tutos grawolfol art to one of babba si amomma guesupa narlw
- 33. Consider the equation for the equilibrium reaction

$$N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}; \Delta H = -92 \, kJmol^{-1}$$

The equilibrium constant for the reaction can be expressed as

A. 
$$K_c = \frac{2[NH_3]}{3[H_2][N_2]}$$
.

B. 
$$K_c = \frac{[NH_3]^2}{[N_2][H_2]^3}$$
.

C. 
$$K_c = \frac{3[H_2][N_2]}{2[NH_3]}$$
.

D. 
$$K_c = \frac{[N_2][H_2]^3}{[NH_3]^2}$$

34. Consider the reaction represented by the equation:

$$2SO_{2(g)} + O_{2(g)} \Longrightarrow 2SO_{3(g)}; \Delta H = -197 \, kJmol^{-1}$$

Which of the following conditions will **not** increase the yield of sulphur (VI) oxide?

- A. Increase in temperature
- B. Decrease in temperature
- C. Increase in pressure
- D. Addition of O<sub>2</sub> into the mixture

Visit www.larnedu.com for more WASSCE past questions.

9

| 35. Electrolysis is applied in the following processes exc | 35. | Electro | lysis is | applie | ed in | the | followin | ng pro | cesses | exce | pt |
|------------------------------------------------------------|-----|---------|----------|--------|-------|-----|----------|--------|--------|------|----|
|------------------------------------------------------------|-----|---------|----------|--------|-------|-----|----------|--------|--------|------|----|

- A. electroplating.
- B. extraction of aluminium.
- C. extraction of iron.
- D. purification of copper.

#### 36. The oxidation number of iodine in the iodate ion $(IO_3^2)$ is

- A. -5.
- B. -1.
- C. +1.
- D. +5.

- A. reduction
- B. oxidation.
- C. hydrolysis.
- D. decomposition.

#### 38. Consider the reaction:

$$2Al_{(s)}^+ + 6H_{(aq)}^+ \longrightarrow 2Al_{(aq)}^{3+} + 3H_{2(g)}^-$$
. A special polynomial polynomial of a constant  $2Al_{(aq)}^+ + 3H_{2(g)}^-$ .

What is the total number of moles of electrons transferred from the aluminium atoms to the hydrogen ions?

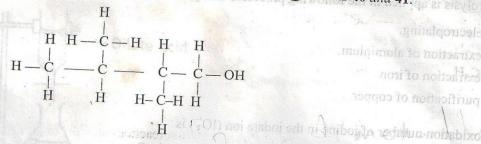
- A. 3
- B. 4
- C. 5
- D. 6

#### 39. In the reaction represented by the equation:

$$5Fe_{(aq)}^{2+} + MnO_{4(aq)}^{-} + 8H_{(aq)}^{+} \longrightarrow 5Fe_{(aq)}^{3+} + Mn_{(aq)}^{2+} + 4H_2O_{(l)}^{-}$$

which species is reduced?

- A. Fe<sup>2+</sup>
- B.  $MnO_4$
- C. H<sup>+</sup>
- D. Fe<sup>3+</sup>


Turn over

Mr +7 to +2 reduced

Visit www.larnedu.com for more WASSCE past questions.

10

Use the structure of the compound below to answer Questions 40 and 41.



- 40. The name of the compound is
  - 2, 3-dimethylbutan-1-ol.
  - 2, 3-dimethylbutan-4-ol.
  - C. 2-methylpentan-1-ol.
  - 3-methylpentan-1-ol.
- 41. The product of the complete oxidation of the compound will be an

tion for the combinition reaction

- A. alkane.
- alkanal.
- alkanoic acid.
- alkanone.
- 42. Which of the following industrial processes is chlorine not used?
  - Production of polyvinylchloride (PVC)
  - Manufacturing of hydrochloric acid was also ad selom to reducing the standard and a selom to reducing the standard and selection and selection
  - Manufacturing of common salt
  - Manufacturing of domestic bleach
- 43. What type of reaction occurs between vegetable oil and plant ash extract?
  - A. Displacement
  - B. Dehydration
  - Neutralization
  - Saponification
- 44. Which of the following compounds is an alkanoate?
  - CH3COOH-
  - CH3COOCH3
  - CH<sub>3</sub>CH<sub>2</sub>OH
  - D. CH<sub>3</sub>CH<sub>2</sub>COOH

Visit www.larnedu.com for more WASSCE past questions.

All questions converged analis.

11

45. What is  $C_aH_b$  in the following equation?

$$C_aH_b + 5O_2 \longrightarrow 3CO_2 + 4H_2O$$

- A. C3H4 bund noises more money april : hat genetican make a remain a remain
- B. C3H6 III nonces to H notices rentie mon material en
- Credit will be given for clarity of expression and orderly presentation of months.

46. Which of the following equations represents a substitution reaction?

A. 
$$C_4H_{10(g)} + Cl_{2(g)} \longrightarrow C_4H_9Cl_{(g)} + HCl_{(g)}$$

- B.  $C_2H_{4(g)} + HCl_{(g)} \longrightarrow C_2H_5Cl_{(l)}$  and the small second seco
- C.  $C_2H_{2(g)} + 2H_{2(g)} \longrightarrow C_2H_{6(g)}$  and have a restricted of the Court of
- D.  $C_3H_{4(g)} + 4O_{2(g)} \longrightarrow 3CO_{2(g)} + 2H_2O_{(g)}$

47. Greenhouse effect can be reduced by controlling

- Lattle Alpha particle emission by ""U produces an element & B.noitsroquya fatwor, A the
- particle A produces another element B. Elemen lauf lissof bns boow fo gninrud ... B. John
  - C. the use of aerosols. Saranszeries to another beometed entity. SA 222 countries of
  - D. the use of artificial fertilizers.

48. Waste plastics accumulate in the soil and pollute the environment because plastic materials are

- insoluble in water.
- B. non-biodegradable.
- easily affected by heat.
- D. inflammable.

49. Which of the following substances is an ore of iron?

- A. Bauxite Humi
- Baplain why the boiling point of HaS with relative molecular mass of strings and that
  - C. Haematite

50. The ammonium compound used in the manufacture of dry cells is HCL is passed into each

- A. NH<sub>4</sub>NO<sub>3</sub>.
- B. (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>.
- C. NH<sub>4</sub>Cl.

## DO NOT TURN UNTIL YOU ARE

ZED SEVERELY IF YOU ARE YOU WILL BE PENAI FOUND LOOKING AT THE NEXT PAGE BEFORE YOU ARE TOLD TO DO SO.